Insulation monitoring

Catalogue

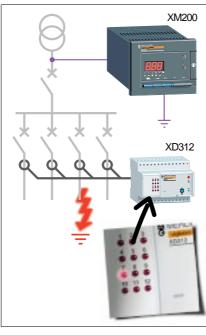
Vigilohm Merlin Gerin

Vigilohm

	page
1/ presentation	2
2/ functions and characteristics	5
3/ installation and connections	27
4/ catalogue numbers	35

continuity of supply

Continuity of supply is a need that must always be satisfied by electrical installations, along with the protection of life and property. The IT system provides the best guarantee in terms of continuity of supply. Even when a first insulation fault is present, the installation can continue to supply power without endangering human life. The first fault must however be detected and repaired before a second fault occurs.

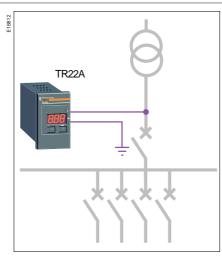


measuring, indicating and locating insulation faults

20122

The insulation monitoring devices of the Vigilohm range are designed to: **measure** the insulation level of the installation;

■ indicate drops in the insulation level below a user-defined threshold. In addition to these basic functions, the Vigilohm System can automatically locate the faulty circuit.



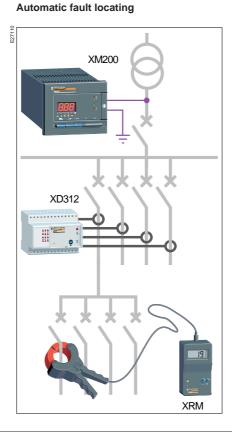
insulation monitoring

Insulation monitoring devices inject a DC or low-frequency AC voltage between the installation and earth. The insulation resistance is determined by measuring the resulting leakage current.

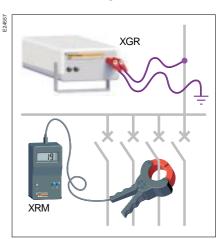
■ Vigilohm EM9 devices use an indicator light to signal the presence of an insulation fault within the installation. They are modular devices (Multi 9 format) designed for small installations or sub-systems isolated from earth;

the TR22A and TR22AH (for hospitals) devices detect insulation faults and, in addition, continuously indicate the value of the insulation resistance on a digital display;
 the XM200 is part of the Vigilohm System range and can be associated with automatic fault locating devices.

fault locating


Once detected, an insulation fault must be located and eliminated in order to guarantee maximum continuity of supply.

Automatic locating:


For easy locating of insulation faults, the Vigilohm System makes it possible to combine the XM200 insulation monitoring device with:

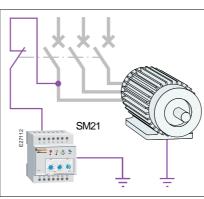
XD301/XD312 fault detectors to monitor the different circuits of the installation;

■ XRM receivers for mobile fault locating.

Manual fault locating

off-line insulation monitoring

The failure of a motor to start can have serious consequences. This is especially true in the following applications:

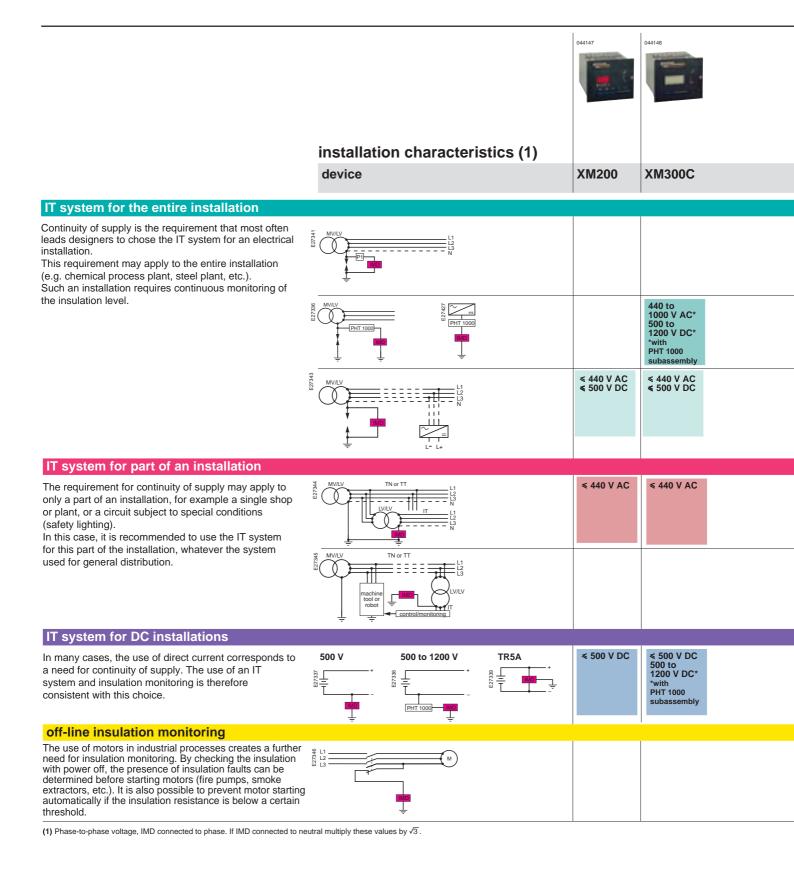

■ safety equipment (fire pumps, smoke extractors, etc.);

production (glass works, cement plants, etc.);

manufacturing processes (rolling mills, etc.).

Motors often fail to start due to insulation problems caused by the humidity that accumulates in the microscopic cracks of the insulation during periods when the motor is

not running. The SM21 device monitors the insulation of critical motors while they are off-line. Insulation faults give rise to an alarm or motor starting lock-out.



27136

Vigilohm

2/ functions and characteristics

page choosing an insulation monitoring device for different types of installations 6 and associated functions 8 Vigilohm System XM200 insulation monitoring 10 device XM300C insulation monitoring 12 device XD301 and XD312 automatic 14 insulation fault detectors XRM mobile fault locating receiver 15 and current probes Vigilohm TR22A and TR22AH insulation 16 monitoring devices EM9 and EM9B insulation 17 monitoring devices EM9BV insulation monitoring device 18 EM9T insulation monitoring device 19 TR5A insulation monitoring device 20 SM21 insulation monitoring device 21 mobile fault locating kit 22 XGR + XRM + probes toroids 23 auxiliaries 24

NOT NOT NOT NOT NOT NOT NOT NOT NOT TR2A TR2AH EM9 EM9E EM9EV EM9T TR5A SM21								
Image:	041850	043274						Constant of Consta
TR22A TR22AH EM9 EM9B EM9B EM9T TR5A SM21 (100 VAC Sthösemby (100 VAC Sthösemby<!--</td--><td></td><td></td><td></td><td></td><td></td><td></td><td>- 355 - 4</td><td></td>							- 355 - 4	
 								
Image: Second	TR22A	TR22AH	EM9	EM9B	EM9BV	EM9T	TR5A	SM21
Image: Second								
< 440 V AC	≤ 1 000 V AC with P1 subassembly							
< 440 V AC								
< 440 V AC								
< 440 V AC								
Image:	≤ 440 V AC	≼ 440 V AC						
Image:								
Image:								
Image:	≤ 440 V AC	≤ 440 V AC	≤ 440 V AC	≼ 440 V AC	≤ 440 V AC			
Image: Second								
Image: Second								
						≼ 220 V AC		
Image: Second secon							≤ 500 V DC	
≤ 690 V AC						 		
								≤ 690 V AC

Vigilohm: functions and characteristics choosing an insulation monitoring device and associated functions

			044147	044148
installation characteristics				
device			XM200	XM300C
injected signal			2.5 Hz	2.5 Hz
IT system for the entire installation				(0)
	voltage (1)	440 to 1000 V AC		(2)
		≤ 400 V AC		
	with rectifiers	440 to 1000 V AC		(2)
		≤ 440 V AC		
	for hospitals	≤ 440 V AC		
IT system for part of an installation				
	high insulation level	≤ 440 V AC		
	low insulation level	≤ 440 V AC		
×	control and monitoring of machines	≤ 220 V AC		
DC installation				
+		24 to 420 V DC		
		≤ 500 V DC		
		500 to 1200 V DC		(2)
off-line monitoring (LV motors)				
		≤ 690 V AC		
communication functions insulation resistance measurement				
	measurement display	y		
	prevention indication	1		
⊗ 7	insulation fault indica	ation		
fault locating				
	manual		(4)	(4)
X J	automatic		(6)	(6)
	 (*) Can be used. (1) Phase-to-phase voltage, IM (2) With PHT 1000 subassembly. (3) With P1 subassembly. (4) With XRM mobile receiver. 		bly these values by e	θ.

(4) With XRM mobile receiver.(5) With XRM mobile receiver + XGR signal generator(6) With XD301/312 detector.

041850	043274	042578	042580	042580	042582	017422	051346
TR22A DC	TR22AH	EM9 DC	EM9B	EM9BV DC	EM9T	TR5A NONE	SM21 DC
DC	bc	DC	bc		be	NONE	50
(0)							
 (3)							
	(*)						
	I	I	I	1	1	I	l
(5)	(5)	(5)	(5)	(5)	(5)	(5)	

Vigilohm: functions and characteristics Vigilohm System XM200 insulation monitoring device

basic function: overall insulation monitoring

The XM200 provides overall insulation monitoring of electrical installations by injecting a low-frequency AC voltage between the installation and earth.

main functions

- measurement:
- □ insulation resistance, □ earth leakage capacitance;
- earth leakage ca indications:
- □ satisfactory insulation resistance (green
- light), drop in insulation resistance:
- below prevention threshold (orange light
- and failsafe relay actuated), – below fault threshold (red light and relay
- actuated),
- □ transient faults (orange light);
- display:
- □ measurements accessible locally on the display unit of the device,
- □ value of the last transient fault.

additional functions with other devices

Identification of faulty circuits This function is obtained by using the XM200 together with XD301/XD312 automatic insulation fault detectors. In addition, an XRM mobile receiver and a current probe can be used to determine the exact location of the fault on the faulty circuit.

standards

The XM200 insulation monitoring device complies with the following standards:

- IEC 364, parts 4 and 5;
- class CPI/XA of UTE C 63-080. It is implemented in accordance with

standard NF C 15-100 paragraph 413.4; IEC 1557-8.

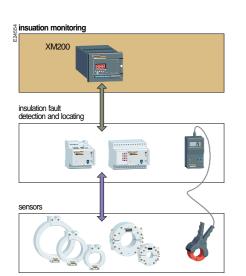
operating voltage

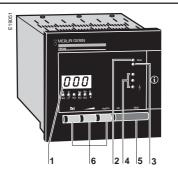
- AC IT systems up to:
- □ 440 V with neutral not distributed,
- □ 760 V with neutral distributed;
- DC systems up to 500 V.

The XM200 cannot be adapted to installations with higher voltages by connecting it to a PHT1000 subassembly. For higher voltage, use an XM300C.

installation

horizontal flush mounting on the front face of a cubicle or enclosure;


easy mounting in Prisma enclosures using the corresponding mounting plates and front plates that come with the appropriate cut-outs.


auxiliaries

Cardew surge limiter: page 24. **ZX** impedance: page 25.

restrictions for use

The XM200 operates by injecting lowfrequency signals (2.5 Hz) and therefore should not be used in the presence of variable speed drives that can produce similar frequencies (\leq 5 Hz).

1. display indicating: ■ the value of the overall insulation

resistance R; ■ other information as selected via function keys.

2. red self-test light, indicating internal XM200 faults.

3. light indicating that a transient fault has occurred.

4. 3 lights indicating the insulation level.

5. sealable cover ensuring tamperproof settings.

6. function keys for:

accessing earth leakage capacitance readings;

setting thresholds;

displaying the value of the last transient insulation fault;

setting time delays.

type of installation to be monitored				
AC or mixed	phase-to phase voltage			
AC/DC IT systems	with XM200 connected to neutral	< 760 V AC		
	with XM200 connected to phase	< 440 V AC		
	frequency	45-400 Hz		
	size of installation	0 to 30 km of cable		
DC or rectified IT systems	line voltage	< 500 V DC		

electrical characteristics

oroon roar orrar a			
ohmmeter			digital
range for insulation resis	tance readings		0.1 to 999 kΩ
signalling	number of thresholds		2 (sealable settings)
	threshold settings	1st threshold (prevent)	10 to 100 kΩ
		2nd threshold (fault)	0.1 to 20 kΩ
time delay for signalling		3 settings	0 s,15 s, 30 s
dielectric strength			2500 V
auxiliary supply voltage t	olerances		- 15 % to +10 %
maximum device consum	nption		30 VA
measurement voltage			25 V
measurement current			3 mA max.
50 Hz/DC impedance			33 kΩ
device test		self-test and manual te	st
failsafe feature (1)			as standard
output contacts	changeover	quantity	2 (1 failsafe)
breaking capacity of		AC 380 V p.f. = 0.7	3 A
output contacts		220 V p.f. = 0.7	5 A
		DC 220 V L/R = 0	0.45 A
		120 V L/R = 0	0.65 A
		48 V L/R = 0	2.5 A
		24 V L/R = 0	10 A
connection cross-section	IS	rigid conductors	1 to 1.5 mm ²
		flexible conductors	0.75 to 1.5 mm ²
mechanical cha	racteristics		

weight		2.5 kg
sheet-metal case (horizontal mounting)	disconnectable screw terminal block	
degree of protection	flush mounting	IP 30
other characteristics		
tamperproof settings	behind sealable co	ver
	e	- 5 °C to + 55 °C
temperature range	operating	- 5 - 0 10 + 55 - 0

automatic	detectors XD301/312
manual	mobile receiver XRM + probes

(1) Failsafe feature: a failsafe relay operates in the event of an accidental interruption of auxiliary power or a fault.

Vigilohm: functions and characteristics Vigilohm System XM300C insulation monitoring device

basic function: overall insulation monitoring

The XM300C provides overall insulation monitoring of electrical installations by injecting a low-frequency AC voltage between the installation and earth.

main functions

■ measurement:

- □ insulation resistance,
- □ earth leakage capacitance;
- indications:

□ satisfactory insulation resistance (green light on bargraph),

- □ drop in insulation resistance:
- below prevention threshold (orange light on bargraph and relay actuated),

- below fault threshold (red light on bargraph and two relays actuated, including one with a failsafe feature),

- □ transient faults (orange light);
- display:

□ measurements accessible locally on the LCD screen of the insulating monitoring device.

additional functions with other devices

Locating of faulty circuits

This function is obtained by using the XM300C together with:

 XD301 and XD312 detectors connected to the toroids placed on the circuits to be monitored;

■ an XRM mobile receiver and a current probe to fine-tune the automatic locating results.

All these devices can be combined on a given installation.

standards

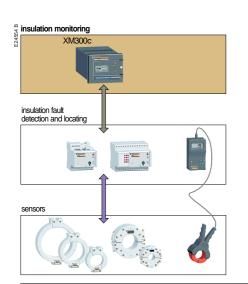
The XM300C insulation monitoring device complies with the following standards:

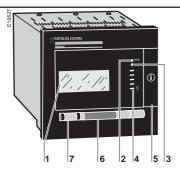
- IEC 364, parts 4 and 5;
- class CPI/XA of UTE C 63-080.
- It is implemented in accordance with
- standard NF C 15-100 paragraph 413.4;
- IEC 1557-8.

installation and connection

horizontal flush mounting on the front face of a cubicle or enclosure;

easy mounting in Prisma enclosures using the corresponding mounting plates and front plates that come with the appropriate cut-outs;


the devices are interconnected by shielded cables (double 0.75 mm² twisted pairs). The resistance between the two most distant points must not exceed 12 Ω. The leakage capacitance between pairs must not exceed 250 nF.


auxiliaries

Cardew surge limiter: page 24. **ZX limiting impedance** to create an impedance-earthed neutral: page 25. **PHT1000 subassembly** if the device is to be used on 1000-1700 V installations: page 25.

restrictions for use

The XM300C operates by injecting lowfrequency signals (2.5 Hz) and therefore should not be used in the presence of variable speed drives that can produce similar frequencies (\leq 5 Hz).

1. display indicating:

■ the value of the overall insulation

resistance R;

other information as selected via function keys.

2. red self-test light, indicating internal XM300C faults.

3. light indicating that a transient fault has occurred.

4. 5 lights indicating the insulation level.

5. instruction manual stored in a drawer on the front face

- 6. sealable cover ensuring tamperproof settings.
- 7. function keys for:
- accessing earth leakage capacitance readings

setting thresholds;

- accessing three last values of transient
- insulation faults;

choice of language.

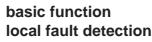
type of installation to be monitored

AC or mixed	phase-to phase vo		< 760 or 1700 V AC (1)	
AC/DC IT systems				
	with XM300C conn	ected to phase	< 440 or 1000 V AC ⁽¹⁾	
	frequency		45-400 Hz	
	size of installation		0 to 30 km of cable	
DC or rectified	line voltage		< 500 or1200 V DC ⁽¹⁾	
IT systems				
electrical cha	racteristics			
ohmmeter			digital	
range for insulation re	esistance readings		0.1 to 999 kΩ	
signalling	number of threshold	S	2 (sealable settings)	
	threshold settings	1st threshold (prevent.) 1 to 299 kΩ	
		2nd threshold (fault)	0.2 to 99.9 kΩ	
dielectric strength			2500 V	
auxiliary supply voltag	ge tolerances		- 15 % to + 10 %	
maximum device con	sumption		30 VA	
measurement voltage	9		5 V	
measurement current	t		5 mA max	
50 Hz/DC impedance	•		22 kΩ	
device test		self-test and manual te	est	
failsafe feature (2)		as standard		
changeover output co		quantity	3 (1 failsafe)	
breaking capacity of o	output	AC <u>380 V p. f. = 0.7</u>	3 A	
contacts		220 V p. f. = 0.7	5 A	
		DC 220 V L/R = 0	0.45 A	
		120 V L/R = 0	0.65 A	
		48 V L/R = 0	2.5 A	
		24 V L/R = 0	10 A	
circuit breaker position	indication contacts (3):	voltage supplied	38 V	
(voltage and current su	upplied by the XM300C)	max. current supplied	10 mA (short-circuit)	
connection cross-sec	tions	rigid conductors	1 to 1.5 mm ²	
		flexible conductors	0.75 to 1.5 mm ²	
mechanical c	haracteristics			
weight			3.5 kg	
sheet-metal case (ho	rizontal mounting)	disconnectable scew te	erminal block	
degree of protection		flush mounting	IP 30	
other charact	eristics			
interfacing possible w	vith	supervisor		
multi-language displa	У	English/French		
tamperproof settings		protected by access co	ode or sealable cover	

storage

temperature range

The upper limit is extended to the second value by adding a PHT1000 subassembly.
 Failsafe feature: a failsafe relay operates in the event of an accidental interruption of auxiliary power or a fault.
 This contact is an auxiliary switch mounted on the circuit breaker and used to indicate its operating status.


operating

- 5 °C to + 55 °C - 25 °C to + 70 °C

Vigilohm: functions and characteristics

Vigilohm System XD301 and XD312 automatic insulation fault detectors

XD301 and XD312 insulation fault detectors have two functions:

- fault detection (with respect to the fault threshold).
- automatic locating of the faulty circuit.

operation

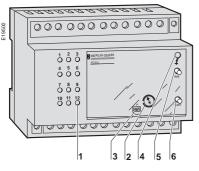
XD301 and XD312 insulation fault detectors are fixed receivers used with (but not connected to) XM300C and XM200 insulation monitoring devices. Via measurement toroids, they detect and automatically locate insulation faults ■ the XD312 detector, with 12 channels connected to a maximum of 12 toroids installed on different circuits of the installation, includes the following features on its front face: □ 12 fault indicator lights corresponding to the 12 channels, □ a selector to enable or disable latching of transient fault indications until reset; detector XD301 is a single-channel version designed for use with one

measurement toroid.

installation and connection

■ live parts in an insulated case with a sealable transparent cover. Width equal to 8 (XD301) or 12 (XD312) 9 mm width modules;

horizontal flush or surface mounting on DIN rail


■ tunnel terminals for 1.5 mm² wires.

toroids

XD301 and XD312 insulation fault detectors operate with type A and OA toroids. They are also compatible with the older type N and O toroids.

insulation fa	ault detectors	XD301	XD312		
electrical ch	aracteristics		•		
type of installation	to be monitored	low voltage AC 45-400 Hz / DC			
operating threshold	l	2.5 mA at 2.5 Hz (1)			
polling time		20 s	20 s per channel		
fault indications		1 indicator light	12 channel indicator lights (+ 1 general)		
local tests		for indicator lights and	output relay		
clearing of indication	ons	reset button on device			
latching of transien	t fault indications	on/off via selector			
output relay	number of contacts	1 failsafe			
breaking capacity of output contacts	AC 380 V p.f. = 0.7	3 A			
	220 V p.f. = 0.7	5 A			
	DC 220 V L/R = 0	0.45 A			
	120 V L/R = 0	0.65 A 2.5 A			
	48 V L/R = 0				
	24 V L/R = 0	10 A			
auxiliary supply vol	tage tolerances	- 15 % to + 10 %			
consumption		6 VA			
dielectric strength		2500 V	2500 V		
connection with ins	ulation monitoring device	none			
mechanical	characteristics				
weight		0.3 kg	0.6 kg		
plastic case		horizontal mounting			
degree of protectio	n flush/surface mounting	IP 30 / IP 20			
other chara	cteristics				
temperature range	storage	- 25 °C to + 70 °C			
-	operating	- 5 °C to + 55 °C			
types of toroid to be	e used	A, OA (N and O compatible)			
toroid for direct cor	nection to case	30 and 50 mm type A toroid	none		

(1) The operating threshold of the XD301/312 detectors is not adjustable. These devices are designed to detect low-impedance faults. The detection threshold varies between 100 Ω and 2 kΩ depending on the characteristics of the installation.

- 1. lights indicating the faulty circuit.
- 2. selector to enable or disable transient

fault indication latching

3. sealable cover.

4. general fault indicator light.

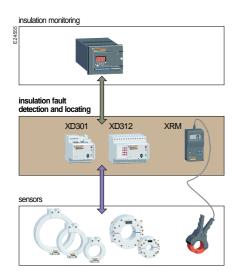
5. test button for indicator lights and output relay

6. reset button (to clear fault indications).

Vigilohm: functions and characteristics XRM mobile fault locating receiver and current probes

XRM receiver

operation


The XRM mobile receiver, used with a current probe, is mainly intended as an enhancement to automatic fault locating systems. It can be placed at various points along a faulty circuit, capturing the signal emitted by an XM300C or XM200 insulation monitoring device to determine the exact location of the fault. Three current probes are available, the

XP15, XP50 and the XP100, for cables with diameters up to 12, 50 and 100 mm respectively.

display

The XRM receiver displays a number from 0 to 19, corresponding to the insulation level: • 0: no fault;

■ 19: solid fault (no insulation).

Vigilohm: functions and characteristics Vigilohm TR22A and TR22AH insulation monitoring devices

use

IT systems:

- LV AC installations up to:
- □ neutral distributed: 760 V, □ neutral not distributed: 440 V;

■ isolated from earth or connected to earth through a capacitive impedance.

TR22H (hospitals)

I high fault threshold up to 251 k Ω ;

■ class MC, according to UTE C 63-080

standard specific to hospital environment.

One device only for each separate installation.

operation

■ injection of DC voltage;

■ insulation measurement: using a microprocessor device, from the leakage current created by the voltage injected between the installation and earth. Earth leakage capacitances do not affect insulation measurement;

■ insulation reading: digital display;

■ 1 alarm threshold pre-set by the user.

installation and connection

- live part in disconnectable metal case;
- vertical flush mounting on front plate
- (supplied);
- connection:

□ disconnectable tunnel terminal block for 2.5 mm² wiring.

□ lug for earthing of exposed conductive parts (supplied).

type of instan	ation to be mo	nitorea				
LV AC IT systems	phase-to-phase voltage					
	with TR22A/AH conn		≤ 760 V (≤ 1700 V ⁽¹⁾			
	with TR22A/AH conn	ected to phase	≤ 440 V (≤ 1000 V ⁽¹⁾			
	frequency		20 to 1000 Hz			
	size		0 to 50 km of cables			
electrical cha	racteristics					
ohmmeter	type		digital			
	reading range		0 to 511 kΩ			
fault signalling	number thresholds		1 (sealable)			
	threshold setting	TR22A	0.7 to 100 kΩ			
	-	TR22AH	1 to 251 kΩ			
response time			3 s			
device test	operation		yes			
	thresholds		yes			
failsafe feature (2)			yes			
output changeover	quantity		1			
contact	breaking capacity	AC 220 V p.f. = 0.7	5 A			
		DC 220 V L/R = 0	0.45 A			
		120 V L/R = 0	0.65 A			
		48 V L/R = 0	2.5 A			
		24 V L/R = 0	10 A			
impedance			100 kΩ			
maximum current inje	cted		240 μΑ			
maximum consumptio	n		5 VA			
auxiliary supply voltag	ge tolerances		- 20 % to + 10 %			
locating signal change	eover switch (3)		yes			
front panel insulation			class 2			
mechanical c	haracteristics					
weight			0.8 kg			
metal case	disconnectable	mounting	vertical			
degree of protection	flush mounted	ŭ	IP 40			
	surface mounted		IP 40			
other charact	eristics					
temperature range	for operation		- 5 °C to + 55 °C			
. 0	for storage		- 40 °C to + 70 °C			
climatic conditions	tropicalisation		T2 type (4)			

fault locating with other devices

XGR portable generator and XRM receiver + probes mobile

(1) For the TR22A, the upper limit is extended to this value by adding a P1 subassembly. This is not possible for the TR22AH. (2) Failsafe: the relay is disactivated either on occurrence of a fault or if the auxiliary supply voltage accidentally fails (3) Locating signal changeover switch: this device identifies the faulty feeder during locating by opening each feeder in turn. When the faulty feeder is opened, the alarm sounds.

(4) T2 type tropicalisation:

adamp heat: 55 °C, 95 % relative humidity, 28 cycles (as in standard IEC 68-2-30);
 salt spray: 5 % NaCl, 48 hours, 3 months storage (as in standard IEC 68-2-11).

standards

TR22A

- IEC 364, chapters 4 and 5;
- NF C 15-100, paragraphs 413 and 532;
- UTE C 63-080 (class CPI/C);
- IEC 1557-8.

TR22AH

- UTE C 83-080 (class CPI/MC);
- IEC 364, chapters 4 and 5;
- NF C 15-100, paragraphs 413 and 532;
- NF C 15-211;
- IEC 1557-8.

auxiliaries

Cardew C surge limiter. Compulsary downstream of an MV/LV transformer;

- ZX impedance;
- S3 inductive neutral point;

P1 additional subassembly for installations with voltages from 440 V to 1000 V AC.

Can be used with TR22A only.

Vigilohm: functions and characteristics

Vigilohm EM9 and EM9B insulation monitoring devices

use

IT systems:

- LV AC installations up to:
- □ neutral distributed: 760 V,
- □ neutral not distributed: 440 V;
- one device only for each separate installation;
- isolated from earth or connected to earth through a capacitive impedance;
- EM9: for installations with a high insulation level.
- EM9B: for installations with a low
- insulation level and capacitive installations.

operation

■ injection of DC voltage;

■ an electronic device measures insulation from the leakage current created in the installation by the voltage injected between

the installation and earth and trips the alarm threshold pre-set by the user.

Earth leakage capacitances do not affect insulation measurement.

installation and connection

■ live part in moulded, insulating, disconnectable, modular case, eight 9 mm modules wide, with transparent sealable cover;

- horizontal or vertical mounting on
- symmetrical rail;
- connection by tunnel terminals for
- 2.5 mm² wiring, terminals 1 to 14.

standards

- UTE C 63-080;
- IEC 364, chapters 4 and 5;
- NF C 15-100 paragraphs 413 and 532;
- NF C 15-211;
- IEC 1557-8.

auxiliaries

- Cardew C surge limiter (only downstream
- of MV/LV transformer);
- ZX impedance;
- S3 inductive neutral point.

type of installation to be monitored

ijpo ol motane			
LV AC IT systems	phase-to-phase vol	0	
	with EM9/EM9B cor	nnected to neutral	≤ 760 V
	with EM9/EM9B cor	nnected to phase	≤ 440 V
	frequency		50-60-400-1000 Hz
	size		0 to 50 km of cables
electrical char	acteristics		
fault signalling	number of threshold	ls	1 (sealable)
-	threshold setting	threshold setting EM9: 10-20-40-60-80-	
		EM9B: 1-2,5-5-10-25-	50-75-100 kΩ
response time			≤5 s
device operating test			local
failsafe feature (1)		as an option	
output contact	number	1 (standard or failsafe)
	type of contact		changeover
	breaking capacity	AC 380 V p.f. = 0.7	3 A
		220 V p.f. = 0,7	5 A
		DC 220 V L/R = 0 s	0.45 A
		120 V L/R = 0 s	0.65 A
		48 V L/R = 0 s	2.5 A
		24 V L/R = 0 s	10 A
maximum consumption)		5 VA
impedance			100 kΩ
maximum current injec	ted		240 μΑ
auxiliary supply voltage	e range		- 15 % + 10 %
mechanical ch	aracteristics		
weight			0.4 kg
thermoplastic	disconnectable	mounting	horizontal
case		-	

inernopiastic	disconnectable	mounting	nonzoniai
case			or vertical
degree of protection		front panel	IP 30
		case	IP 20
athan aharaat	ariatiaa		

other characteristics

mobile

temperature range for operation for storage

climatic conditions tropicalisation

fault locating with other device

XGR portable generator and XRM receiver + probes

(1) failsafe: the relay is disactivated either on occurrence of a fault or if the auxiliary supply voltage accidentally fails.
 (2) T2 type tropicalisation:

■ damp heat: 55 °C, 95 % relative humidity, 28 cycles (as in standard IEC 68-2-30);

■ salt spray: 5 % NaCl, 48 hours, 3 months storage (as in standard IEC 68-2-11).

- 5 °C to + 55 °C

- 40 °C to + 70 °C

T2 type (2)

Vigilohm: functions and characteristics Vigilohm EM9BV insulation monitoring devices

use

- IT systems:
- LV AC installations up to:
- □ neutral distributed: 760 V,
- □ neutral not distributed: 440 V;
- one device only for each separate installation.
- isolated from earth or connected to earth through a capacitive impedance.

operation

- injection of DC voltage; ■ an electronic device measures insulation from the leakage current created in the
- installation by the voltage injected and trips the alarm when insulation drops below the alarm threshold pre-set by the user. Earth leakage capacitances do not affect insulation measurement;

display of insulation resistance.

installation and connection

■ live part in moulded, insulating, disconnectable, modular case, eight 9 mm modules wide, with transparent sealable cover;

- mounting on symmetrical rail: □ measurement module: horizontal or vertical,
- □ display module: horizontal;
- connection by tunnel terminals for
- 2.5 mm² wiring, terminals 1 to 14.

standards

- UTE C 63-080;
- IEC 364, chapters 4 and 5;
- NF C 15-100 paragraphs 413 and 532;
- NF C 15-211;
- VDE 107:
- VDE 413-2;
- IEC 1557-8.

type of	installation	to	be	monitored
.,	motanation		~ ~	

LV AC IT systems	phase-to-phase	0	
		nnected to neutral	< 760 V
		nnected to phase	≤ 440 V
	frequency		50-60-400-1000 Hz
	size		0 to 50 km of cables
electrical cha	racteristics	S	
ohmmeter	type		digital
	range		0 to 511 kΩ
impedance			100 kΩ
maximum current inje	ected		240 μΑ
fault	number of three	sholds	1 (sealable)
signalling	threshold settin	ıg	1-2.5-5-10-25-50-75-100kΩ
response time			≤5 s
device operating test			local
fail safe device (1)			optional
output contact	number		1 (stand. or fail safe)
	type of contact		changeover
	breaking	AC 380 V p.f. = 0.7	3 A
	capacity	220 V p.f. = 0.7	5 A
		DC 220 V L/R = 0 s	0.45 A
		120 V L/R = 0 s	0.65 A
		48 V L/R = 0 s	2.5 A
		24 V L/R = 0 s	10 A
maximum consumpti	on		5 VA
auxiliary power suppl	y operating range)	- 15 % to + 10 %
mechanical c	haracterist	ics	
weight	measuring mod	lule	0.4 kg
	display module		0.4 kg
thermoplastic			disconnectable
case	mounting	measurement module	horizontal or vertical
		display module	horizontal
degree of protection		front panel	IP 30
		case	IP 20
other charact	eristics		
temperature	for operation		- 5 °C to + 55 °C
range	for storage		- 40 °C to + 70 °C
climatic conditions	tropicalisation		T2 type (2)

climatic conditions tropicalisation T2 type (2) link between display module and measurement module shielded cable, 1 m max. length

fault locating with other devices

mobile XRG portable generator and XRM receiver + probes

(1) fail safe: the relay is de-energized by occurrence of a fault or accidental failure of the auxiliary power supply voltage. (2) type T2 tropicalisation:
humid heat: 55 °C, 95 % relative humidity, 28 cycles (as per IEC 68-2-30);
salt spray 5 % NaCl, 48 hours, 3 months' storage (as per IEC 68-2-11).

- auxiliaries

- ZX impedance; ■ S3 inductive neutral point;
- Cardew C surge limiter.

Vigilohm: functions and characteristics Vigilohm EM9T insulation monitoring devices

use

IT systems:

- LV AC installations up to:
- □ neutral distributed: 380 V,
- □ neutral not distributed: 220 V;
- one device only for each separate installation;
- isolated from earth or connected to earth
- through a capacitive impedance;
- specially designed for machine control and monitoring installations.

operation

■ injection of DC voltage;

■ an electronic device measures insulation, from the leakage current created in the installation by the voltage injected and trips the alarm when insulation drops below the alarm threshold pre-set by the user. Earth leakage capacitances do not affect insulation measurement.

installation and connection

■ live part in moulded, insulating,

disconnectable, modular case, eight 9 mm modules wide, with transparent sealable cover:

horizontal or vertical mounting on symmetrical rail;

■ connection by tunnel terminals for 2.5 mm² wiring, terminals 1 to 14.

standards

- UTE C 63-080;
- IEC 364, chapters 4 and 5;
- NF C 15-100, paragraphs 413 and 532;
- NF C 15-211;
- IEC 1557-8.

auxiliaries

- ZX impedance;
- S3 inductive neutral point.

type of installation to be monitored

LV AC IT systems	phase-to-phase		< 200 \/
	with EM9T conn		≤ 380 V
	with EM9T conn	ected to phase	≤ 220 V
	frequency		50-60-400-1000 Hz
	size		0 to 50 km of cables
electrical ch	aracteristics	5	
impedance			100 kΩ
maximum current in	njected		240 μΑ
fault	number of thres	hold	1 (sealable)
signalling	threshold setting]	10-20-40-60-80-100-120-
			150 kΩ
response time			≤ 5 s
device operating te	st		local and remote
output contact	number		1
	type of contact		changeover
	breaking	CA 380 V p.f. = 0.7	3 A
	de coupure	220 V p.f. = 0.7	5 A
		CC 220 V p.f. = 0 s	0.45 A
		120 V L/R = 0 s	0.65 A
		48 V L/R = 0 s	2.5 A
		24 V L/R = 0 s	10 A
maximum consump	otion		5 VA
auxiliary supply vol	tage tolerances		- 15 % to + 10 %
mechanical	characteristi	cs	
weight			0.4 kg
thermoplastic	disconnectable	mounting	horizontal
case			or vertical
degree of protectio	n	front panel	IP 30
		case	IP 20
other caract	téristiques		
temperature	-	for operation	- 5 °C to + 55 °C
range		for storage	- 40 °C to + 70 °C
climatic conditions		tropicalisation	T2 type (1)
fault locatin	g with other	devices	
·			

mobile XRG portable generator and XRM receiver + probes

(1) type T2 tropicalisation:

humid heat: 55 °C, 95 % relative humidity, 28 cycles (as per IEC 68-2-30);
 salt spray 5 % NaCl, 48 hours, 3 months' storage (as per IEC 68-2-11).

Vigilohm: functions and characteristics Vigilohm TR5A insulation monitoring device

use

IT systems:

LV DC installations up to 420 V;

■ isolated from earth.

operation

■ a device with a high input impedance measures the variation in potential of the two polarities of the installation compared with earth. These variations are transformed into insulation signals;

■ auxiliary power comes from the monitored installation;

■ if monitoring and signalling are required, for an insulation fault evenly divided between both polarities, use the Vigilohlm System XM200.

installation and connection

■ live part in moulded, insulating disconnectable, modular case eleven 9 mm modules wide, with transparent sealable cover;

horizontal flush or surface mounting on symmetrical rail;

■ connection by 6.35 mm tab connectors for 2.5 mm² wiring.

standards

- UTE C 63-080;
- IEC 364, chapters 4 and 5;

■ NF C 15-100, paragraphs 413.4-3;

■ IEC 1557-8.

type of installa	ation to be mo	nitored	
LV DC	voltage between polarities		24-42-48-120-220
			260-420 V
	size of installation		0 to 50 km of cable
electrical char	acteristics		
fault signalling	number of threshold	S	1 (sealable)
	threshold setting	DC 24 to 48 V installat.	5 to 25 kΩ
		DC 120 V installat.	10 to 50 kΩ
		DC 220 V installat.	30 to 150 kΩ
		DC 260 to 420 V installat	. 30 to 150 kΩ
response time on solid	fault		≤1 s
device operating test			yes
failsafe feature (1)			yes as an optior
changeover	number		1
output contact	breaking	AC 220 V p.f. = 0.7	5 A
	capacity	DC 120 V L/R = 0 ms	0.65 A
supply voltage range (i	installation)		- 20 % to + 20 %
internal impedance	between + or -	DC 24 to 48 V installat.	24 kΩ
	polarity and earth	DC 120 V installat.	46 kΩ
		DC 220 V installat.	154 kΩ
		DC 260 to 420 V installat	. 166 kΩ
	between polarity	DC 24 to 48 V installat.	38 kΩ
		DC 120 V installat.	55 kΩ
		DC 220 V installat.	82 kΩ
		DC 260 to 420 V installat	. 132 kΩ
mechanical ch	naracteristics		
weight			0.5 kg
plastic case	disconnectable	mounting	horizontal
degree of protection		flush mounting	IP 30
		surface mounting	IP 20
other characte	eristics		
temperature range	for operation		- 5 °C to + 55 °C
2	for storage		- 40 °C to + 70 °C
climatic conditions	tropicalisation		type T2 (2)

climatic conditions tropicalisation fault locating with other devices

mobile XGR portable generator and XRM receiver + probes

(1) failsafe: the relay is disactivated either on occurrence of a fault or if network voltage fails.

(2) T2 type tropicalisation:
 adamp heat: 55 °C, 95 % relative humidity, 28 cycles (as in standard IEC 68-2-30);

salt spray: 5 % NaCl, 48 hours, 3 months storage (as in standard IEC 68-2-11).

Vigilohm: functions and characteristics

Vigilohm SM21 off-line insulation monitoring device

use

monitors de-energised equipment (e.g. motors, fire pumps,...) whatever the earthing system.

De-energised installations:

■ AC (up to 690 V) or DC (up to 690 V); when associated with a circuit breaker possessing an MN or MX release or with a contactor, the SM21 protects motors against insulation faults that may be produced during operating shutdowns (e.g. due to condensation), by initiating an alarm or startup lock-out.

operation

■ injection of DC voltage.

Voltage is applied, with the motor deenergised, between the stator and earth, thereby creating a leakage current in the motor insulation resistances;

2 pre-set thresholds:

□ 1 prealarm threshold, adjustable in 8 steps from 0.5 to 10 $M\Omega$,

□ 1 alarm threshold, adjustable in 8 steps from 0.25 to 2 MΩ.

An electronic device measures insulation from the leakage current created by the voltage injected and activates the alarm or prevents starting when insulation drops below the corresponding threshold.

installation and connection

■ live part in moulded, insulating,

disconnectable, modular case, eight 9 mm modules wide, with transparent sealable cover.

horizontal or vertical mounting on symmetrical rail;

connection: wires up to 2.5 mm²;

■ the SM21 is used with a contact that opens to disconnect the device from the installation when the installation is energised.

standards

■ IEC 1557-8.

type of de-energised installation to be monitored

LV AC IT	phase-to-phase voltage	≤ 690 V ⁽¹⁾	
(de-energised)	frequency	50-60-400-1000 Hz	
DC	voltage between polarities	≤ 690 V ⁽¹⁾	
(de-energised)			

electrical characteristics

fault signalling	number of thresholds	6	2
	threshold values	prealarm	0.5-1-1.5-2-3-5-
	± 15 %		7,5-10 MΩ
		alarm	0.25-0.5-0.75-1-
			1.25-1.5-1.75-2 MΩ
response time			≤1s
device operating test			yes
alarm inoperative		yes	by selector switch
failsafe device ⁽²⁾			as standard (3)
impedance interne		DC	1.6 MΩ
		AC 50-60 Hz	350 kΩ
changeover	number	alarm	1 standard
output contact		prealarm	1 failsafe
	breaking	AC 220 V p.f. = 0.7	5 A
	capacity	DC 120 V L/R = 0 ms	0.65 A
mechanical c	haracteristics		
weight			0.3 kg

weight			0.3 kg
plastic case	disconnectable	mounting	horizontal/vertical
degree of protection		flush mounting	IP 30
		surface mounting	IP 20

other characteristics

temperature withstand	for operation	- 5 °C to + 55 °C
	for storage	- 40 °C to + 70 °C
climatic conditions	tropicalisation	type T2 ⁽⁴⁾

depends on rated voltage withstand of the contact used to disconnect the SM21 when the network is energised.
 failsafe: the relay is disactivated on occurrence of a fault or if the auxiliary supply voltage accidentally fails.

(3) only the first alarm contact.

(4) T2 type tropicalisation:
 damp heat: 55 °C, 95 % relative humidity, 28 cycles (as in standard IEC 68-2-30);

■ salt spray: 5 % NaCl, 48 hours, 3 months storage (as in standard IEC 68-2-11).

Vigilohm: functions and characteristics Vigilohm mobile fault locating kit XGR + XRM + probes

presentation

The mobile fault locating kit comes in the form of a case containing:

■ a locating signal generator, XGR, supplied with 220 - 240 V AC;

a locating signal receiver XRM;

■ three tong-type current probes: XP15,

XP50 and XP100. The devices making up the kit and the XGR for other voltages are all available individually.

See catalogue number tables.

use

The kit is used on LV IT systems (i.e. installations with an unearthed or impedance-earthed neutral). It enables fault locating on:

AC installations 50 to 400 Hz;

DC installations.

It is used mainly with insulation monitoring devices that inject DC currents (TR22A, EM9B or EM9BV, etc.).

operation

■ the XGR generator injects a 2.5 Hz AC voltage between the installation and the earth, thereby creating a leakage current which passes through the installation insulation impedance;

■ the XRM mobile receiver is associated with one of the three tong-type probes, XP15, XP50 or XP100, and detects this leakage current at 2.5 Hz. It displays a value between 1 and 19 according to the current passing through the probe, thus detecting the leakage current;

■ three current probes are available, the XP15, XP50 and the XP100, for cables with diameters up to 12, 50 and 100 mm respectively. Older probe models are not compatible with the XRM.

type of installation to be monitored

LV AC or mixed	phase-to-pl		
AC/DC IT systems	with XGR c	760 V	
	with XGR c	onnected to phase	440 V
	frequency		45 to 400 Hz
DC or rectified IT systems	voltage between polarities		500 V
electrical character	ristics		
auxiliary supply	XGR	voltage	115 to 525 V AC
		maximum consumption	15 VA
	XRM	IEC alkaline 9 V cell	PP3 or
			6 LR61 type
			not supplied
display	XRM	type	digital
		scale	0 to 19
calibration	XRM		by potentiometer
impedance	XGR		40 kΩ
maximum current injected	XGR		2.5 mA
mechanical charac	teristics		
weight	XGR		0.85 kg
	XRM		0.2 kg
case	XGR	plastic	portable
	XRM	plastic	portable
associated equipm	ent		
probes	XP15	for cables up to	ø 12 mm
	XP50	for cables up to	ø 50 mm
	XP100	for cables up to	ø 100 mm

Locating signal generator XGR

Locating signal receiver XRM

Closed toroids (type A)

Split toroids (type OA)

use

The toroids are used to detect the earth leakage currents.

They are used with the Vigilohm System for the detection, locating and measurement of earth fault currents on IT systems. Closed toroids (type A) are suitable for new installations and extensions. Split toroids (type OA) are suitable for renovated installations and extensions.

functions

These toroids detect leakage current and transmit a proportional signal to the associated receiver.

compatibility

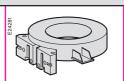
All type A and OA toroids are compatible with XD301 and XD312.

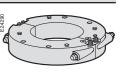
installation and connection

Closed toroids (type A)

- enclosed in an insulated casing;
- 2 possibilities for mounting:
- □ diam. 30-50-80 mm on symmetrical rail,
- □ all diameters on plate and cables;
- connection:

□ diam. 30 to 200 mm by tunnel terminals for 0.22 mm² wires (minimum),


□ diam. 300 mm by 6.35 mm tab connectors.


Split toroids (type OA)

- enclosed in an insulated casing;
- mounting on plate and cable;

■ connection by 5 mm diam. screws for 0.22 mm² wires.

	20
characteristic	
011010000110011	

toroids		type A	type OA
electrical cha	racteristics		1
transformation ratio		1/1000	1/1000
maximum permissible current: 1 kA continuous - 5 kA/1.5 s - 100 kA/0.05 s		•	
mechanical c	haracteristics		•
weight (kg)	ø 30	0.120	
	ø 50	0.200	
	ø 80	0.420	
	ø 120	0.590	
	ø 200	1.320	
	ø 300	2.230	
	ø 46		1.300
	ø 110		3.200
other charact	eristics		
temperature range	for storage	– 55 °C to + 85 °C	– 55 °C to + 85 °C
	for operation	– 5 °C to + 70 °C	– 5 °C to + 70 °C
degree of protection		IP 20	IP 20

installation precautions

Immunity to line overcurrents

Line overcurrents, due to motor starting or transformer energising, may result in unnecessary fault detection by the detector. A number of simple precautions can help prevent this from happening: when used together they are even more effective:

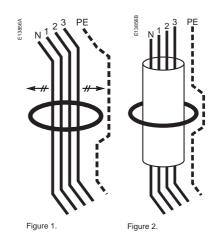
■ place the toroid on a straight part of the cable;

carefully centre the cable in the toroid; ■ use a toroid with a diameter far larger than the diameter of the cable (2 x diameter), (figure 1).

For severe operating conditions, use of a mild steel sleeve placed around the cable, in the toroid, considerably increases immunity.

Recommended characteristics

■ mild steel foil, 1/10 mm thick, to be wound several times around the cable in the toroid (at least 1 mm thick);


■ internal diameter of toroid > 1.4 x external diameter of the cable bundle (figure 2);

■ toroid-detector link:

 \Box resistance $\leq 3 \Omega$,

□ cross-sectional area of wires: 0.75 mm² to 1.5 mm²,

□ maximum length: 50 m.

section of auxiliaries

accessories can be provided:

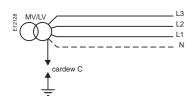
A number of accessories are required for Vigilohm installations; other optional

 essential auxiliary; 	
optional auxiliary.	

Vigilohm	XM200 XM300C		XGR	TR22A	TR22AH	EM9 EM9B EM9T	réf
	U < 440 VAC (5)	760 à 1700 VAC (4) 440 à 1000 VAC (5) 500 à 1200 VDC (6)					
"250 V " Cardew C (1) or						■ (2)	50170
"440 V" Cardew C (1) or						■ (2)	50171
"660 V" Cardew C (1) or						■ (2)	50172
"1000 V" Cardew C (1) or						(2)	50183
Cardew C base							50169
P1 subassembly				(3)			50211
ZX limiting impedance							50159
S3 inductive neutral point ≤ 380V							50113
PHT 1000 additional subassembly		except XM200					50248

(1) See choice of the type of Cardew C (250, 440, 600 or 1000 V) below (2) The use of a Cardew C is unnecessary with the EM9T.

(3) Necessary for TR22A or XGR used on installations with U > 440 V.
 (4) Neutral distributed.


(5) Neutral not distributed (6) DC installation

auxiliary characteristics

Cardew C surge limiter

- on LV network with isolated or impedanceearthed neutral;
- connected to the secondary of the MV/ LV transformer to discharge overvoltages to earth:
- capable of withstanding the short-circuit
- current of the transformer;
- its operation causes continuous indication on the insulation monitor.

connection Characteristics

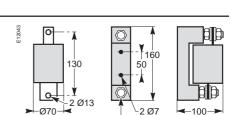
- non-arcing voltage at 50 Hz
- ≤ 1.6 x nominal U;
- certain arcing voltage at 50 Hz
- \ge 2.5 x nominal U (3 x nominal U for 220 V);
- maximum current after arcing:
- 40 kA/0.2 sec;
- insulation resistance > 10¹⁰ ohms;
- cartridge not reusable;
- temperature range: □ operating: $-5 \degree C$ to $+40 \degree C$, □ storage: $-25 \degree C$ to $+70 \degree C$.

Standards

- NF C 63-150, NF C 15-100. Weight: 1 kg.
- Cardew selection table
- The selection depends on:
- the operating voltage Un of the installation; the installation insulation level;
- the connection point (neutral-earth or
- phase-earth).

Un: ph.-ph. operat. voltage of the AC instal. Ui arcing voltage Cardew C neutral distributed neutral not distributed "type 400 V < Ui ≤ 750 V "250 V" U ≤ 380 V U ≤ 220 V 380 V < U ≤ 660 V 220 V < U ≤ 380 V 700 V < Ui ≤ 1100 V "440 V" 660 V < U ≤ 1000 V 380 V < U ≤ 660 V 1100 V < Ui ≤ 1600 V "660 V" 1000 V < U ≤ 1560 V 660 V < U ≤ 1000 V 1600 V < Ui ≤ 2400 V "1000 V"

Connecting conductor size


- cable or bar with a size adapted to the transformer rating
- cable size in mm² for a 20 kV/400 V transformer.

■ the connecting conductor should be considered to be a protective conductor (PE) and the calculation of its crosssectional area must satisfy applicable installation standards, considering that this part of the installation is protected by protective devices located upstream of the . MV/LV transformer;

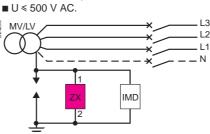
■ according to standard IEC 364, the formula for the calculation of the of the size of the PE conductor is: $S = \sqrt{l^2 t/k}$ where S is the cross-sectional area of the PE conductor in mm²,

I is the fault current, t is the operating time of the protective device and k is a coefficient that depends on the metal and insulation material used for the conductor.

recommendation: if insulation monitoring is provided using the Vigilohm System, install a type A toroid on the Cardew earthing circuit in order to monitor operation of the Cardew. The toroid can be connected to an XD301/ 312 detector.

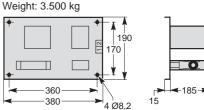
M12

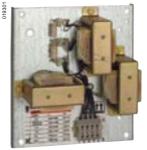
ZX limiting impedance subassembly



Connection

- creates an installation with an impedanceearthed neutral;
- remains connected during fault locating at
- 2.5 Hz:
- □ 1500 Ω at 50 Hz,


24299

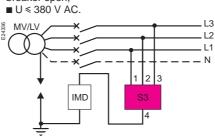


Dimensions, mounting

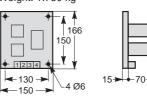

24300

S3 inductive neutral point subassembly

PHT1000 additional subassembly



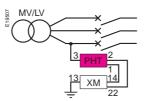
P1 subassembly



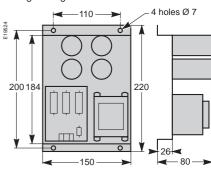
Connection

creates an artifical neutral point for insulation monitoring, with the main circuitbreaker open;

Dimensions, mounting Weight: 1.750 kg



Connection

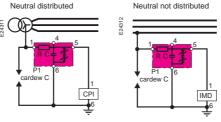

■ for use with the Vigilohm System XM300C on the following installations: □ 440 V AC ≤ U ≤ 1000 V AC, neutral not distributed,

□ 760 V AC ≤ U ≤ 1200 V AC, neutral distributed,

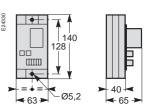
 \Box 500 V DC \leq U \leq 1200 V DC: installation.

Dimensions, mounting Weight: 2 kg

Connection

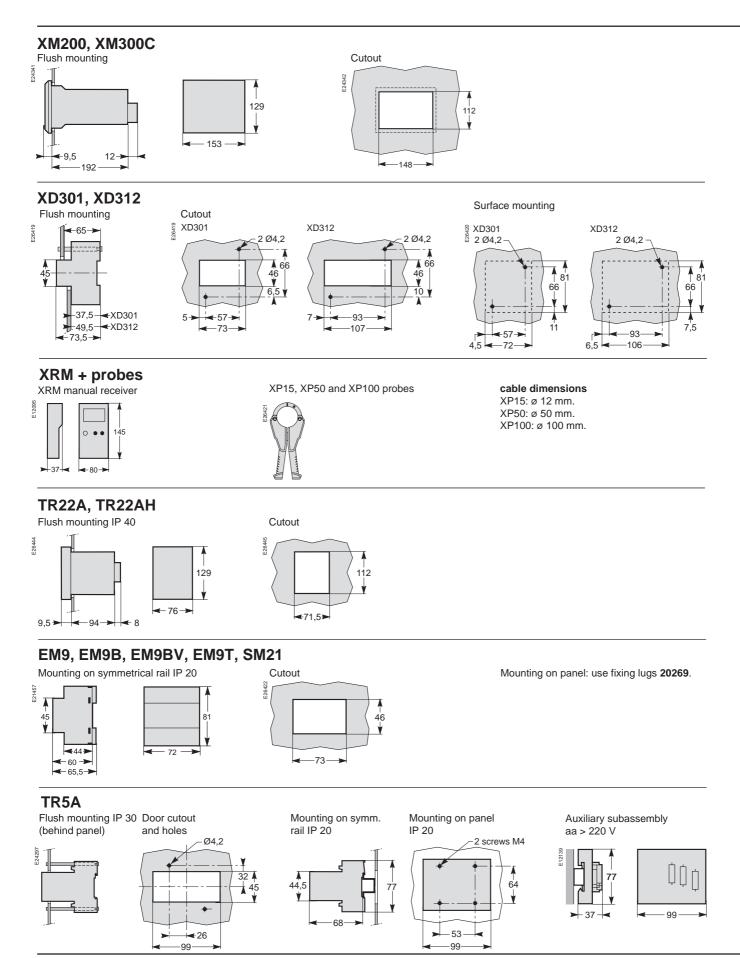

Iowers the voltage applied to the TR22A/AH insulation-monitoring device or XGR generator for mobile locating:

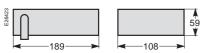
□ 440 V AC ≤ U ≤ 1000 V AC, neutral not distributed,


□ 760 V AC ≤ U ≤ 1200 V AC, neutral distributed;

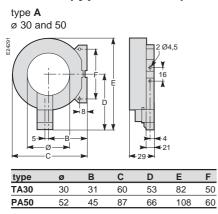
■ lowers the voltage applied to the THR insulation-monitoring device.

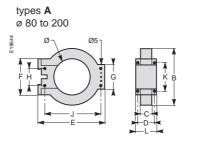
Neutral distributed


Dimensions, mounting Weight: 0.400 kg


Vigilohm

3/ installation and connection


	page
dimensions	28
connection	30

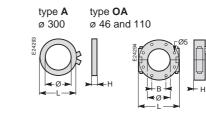


XGR

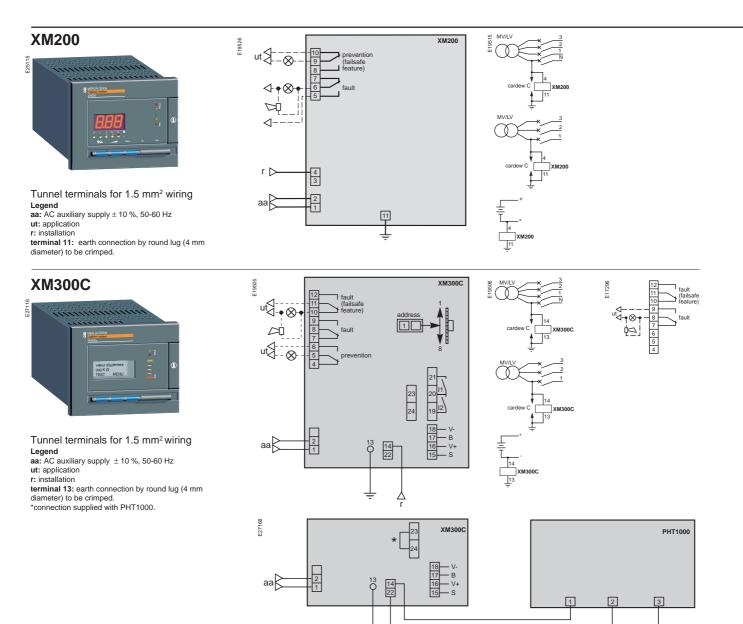
toroids (type A and OA)

ø B C

 IA80, IE80
 80
 122
 26.5
 35
 150
 80
 55
 40
 126
 65
 44

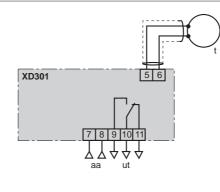

 MA120, ME120
 120
 164
 26.5
 35
 190
 80
 55
 40
 126
 65
 44

SA200, SE200 196 256 29 37 274 120 90 60 255 104 46

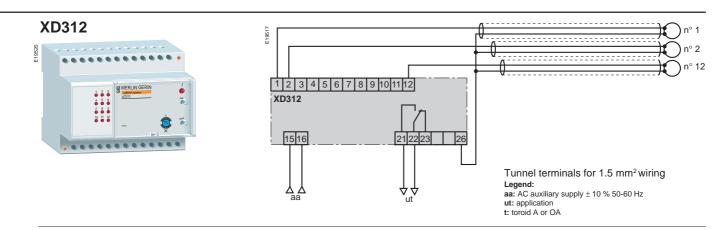

DE F G H J

ΚL

type



type	ø	Н	L	type	ø	н	L	в	С
GA300	299	29	344	POA	46	68	148	57	38
				GOA	110	68	224	76	44



늪

Tunnel terminals for 1.5 mm² wiring Legend: aa: AC auxiliary supply ± 10 %, 50-60 Hz ut: application t: toroid A or OA

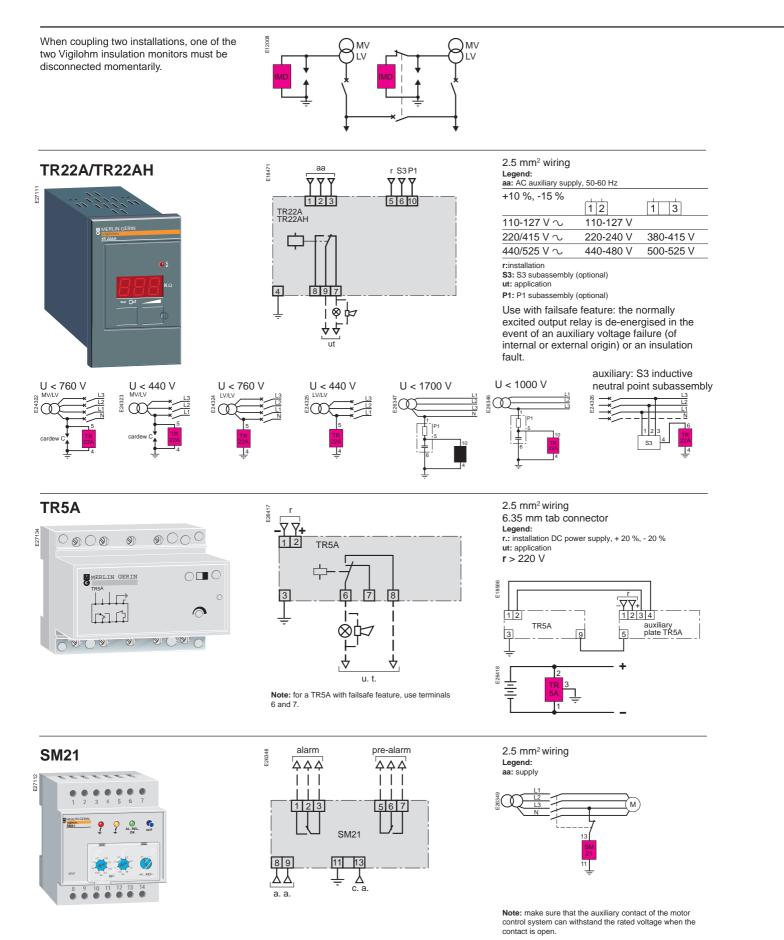
Å

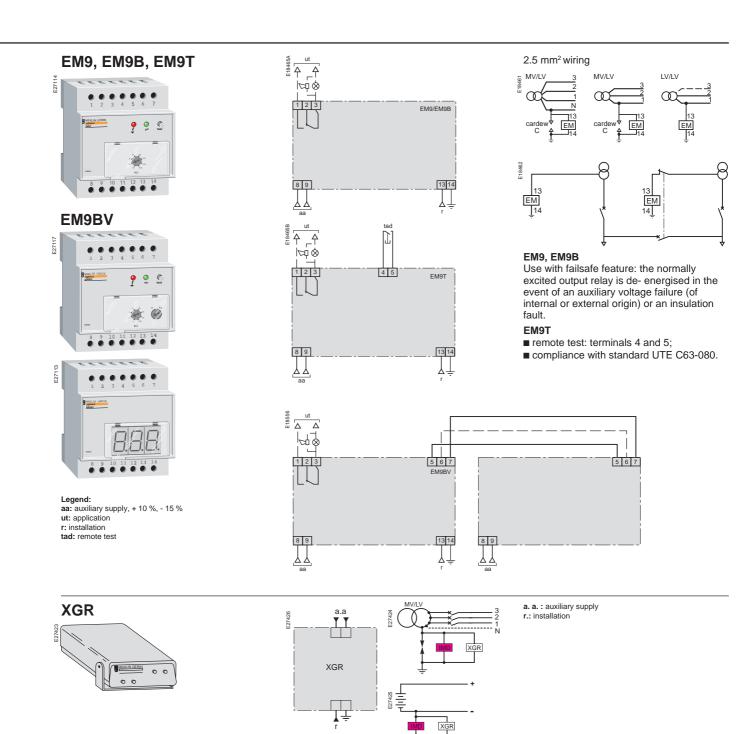
Mounting examples for type A toroids **On** XD301**detector**, ø 30 to 50

On rail, ø 30 to 80 mm

On plate or section, type A, ø 30 to 200 mm

On cable, ø 120 to 300 mm


042590



Vigilohm: installation and connection **Connection** (cont.)

Merlin Gerin

Vigilohm

4/ catalogue numbers

Vigilohm TR22A/TR22AH

	network volta	age (neutral unavailable)	≤ 440 V AC	
m2222m	with rectifiers	: balanced fault detection		
B MERLIN GERIN	TR22AH : sp	ecial hospital version		
1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	single phase	auxiliary power supply (V)		
61	TR22A	115/127 V AC 50/60 Hz		50395
Ka ka		220/240 V AC 50/60 Hz		50396
		380/415 V AC 50/60 Hz		
		440/480 V AC 50/60 Hz		50397
		500/525 V AC 50/60 Hz		
	TR22AH	115/127 V AC 50/60 Hz		50398
		220/240 V AC 50/60 Hz		50399
		380/415 V AC 50/60 Hz		
		440/480 V AC 50/60 Hz		50391
		500-525 V AC 50/60 Hz		
	TR22AH	220/240 V AC 50/60 Hz		50404
	(threshold	380/415 V AC 50/60 Hz		
	mini 50 kΩ)			

Vigilohm EM9

××××××××	network voltage (neutral unavailable)	\leq 440 V AC		
	high insulation (adjustable threshold 10-150 k Ω)			
1 2 3 4 5 6 7	single phase auxiliary power supply (V)		standard model	fail safe model
9 9 C	115/127 V AC 50/60 Hz		50595	50596
	220/240 V AC 50/60 Hz		50597	50598
	380/415 V AC 50/60 Hz		50599	50600
B 9 10 11 12 13 14	440/480 V AC 50/60 Hz		50601	50602

Vigilohm EM9B

	network voltage (neutral unavailable) \leq 440 V AClow or capacitive insulation (adjustable threshold 1-100 kΩ)	;	
1 2 3 4 5 6 7	single phase auxiliary power supply (V)	standard model	fail safe model
P C C	115/127 V AC 50/60 Hz	50555	50556
	220/240 V AC 50/60 Hz	50557	50558
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	380/415 V AC 50/60 Hz	50559	50560
<u> </u>	440/480 V AC 50/60 Hz	50561	50562

Vigilohm EM9BV

•	 • • • 2 3 4 	• • • 5 6 7
9 <u></u>	IG INDI	📍 💁 💁
_		× Ø
	9 10 11 • • •	12 13 14 • • •
•	 • • • 2 3 4 	• • • 5 6 7
B Martin	COLUMN .	
	- - -	8.8. ••••

network voltage (neutral unavailable)	≤ 440 V AC		
digital insulation readout (adjustable threshold 1-100 k Ω)			
single phase auxiliary power supply (V)		standard model	fail safe model
115/127 V AC 50/60 Hz		50568	50569
220/240 V AC 50/60 Hz		50570	50571
380/415 V AC 50/60 Hz		50572	50573
440/480 V AC 50/60 Hz		50574	50575

115/127 V AC 50/60 Hz	50568	50569
220/240 V AC 50/60 Hz	50570	50571
380/415 V AC 50/60 Hz	50572	50573
440/480 V AC 50/60 Hz	50574	50575

Vigilohm EM9T

• • Manua canto Againa Again

****	network voltage (neutral unavailable) ≤ 220 V AC	
	machine control and display (adjustable threshold 10-150 k Ω)	
2 3 4 5 6 7	single phase auxiliary power supply (V)	
🖷 🧕 e 🐑	24 V AC 50/60 Hz	50581
	48 V AC 50/60 Hz	50582
1 4-1	115/127 V AC 50/60 Hz	50583
<u>/</u>	220/240 V AC 50/60 Hz	50584
9 10 11 12 13 14		

Vigilohm TR5A

The The The The The	network voltage (neutral unavailable)	≤ 420 V DC		
• • • • • • • • • • • • • • • • • • • •	(adjustable threshold 5-150 kΩ)			
	power supply from network monitored (V)		standard model	fail safe model
	24 V DC		50340	50344
ji i i i i i i i i i i i i i i i i i i	42/48 V DC		50341	50345
111 🎽 /	120 V DC		50342	50346
	220 V DC		50343	50347
	260 V DC		50350 *	
	420 V DC		50351 *	
	* with external plate supplied			

Vigilohm SM21

2222222	network voltage ≤ 690 V *	
	single phase auxiliary power supply (V)	
1 2 3 4 5 6 7	115/127 V AC 50/60 Hz	50760
	220/240 V AC 50/60 Hz	50761
	380/415 V AC 50/60 Hz	50762
🖌 😹 🐼	440/480 V AC 50/60 Hz	50763
	500/525 V AC 50/60 Hz	50764
8 9 10 11 12 13 14 • • • • • • • •	* this voltage is governed by the rated voltage stability performance of the open	
	auxiliary contact used to isolate the SM21 from the network.	

mobile 2.5 Hz generator

mobile fault tracking k	mobile fault tracking kit case containing:	
XGR (220/240 V) + X	RM + XP15, XP50 and XP100 probes	
empty case for mobile	e fault tracking kit	50285
mobile XGR generato	r 115/127 V CA 50/60 Hz	50281
	220/240 V AC 50/60 Hz	50282
	380/415 V AC 50/60 Hz	50283
	500/525 V AC 50/60 Hz	50284
mobile detector and p	robes XRM and XP15 probe	50277
	XRM and XP50 probe	50287
	XRM and XP100 probe	50288
	XRM and XP50 + XP100 probes	50289
	probe XP15	50494

auxiliaries

Vigilohm	TR22A TR22AH	EM9 EM9B EM9BV EM9T	TR5A	SM21	
"250 V" Cardew C or		■ (1)			50170
"440 V" Cardew C or		(1)			50171
"660 V" Cardew C or		(1)			50172
"1 000 V" Cardew C		(1)			50183
Cardew C base					50169
plate P1					50211
limiting impedance ZX					50159
inductive neutral point S3					50113
 compulsory auxiliary optional auxiliary 					
Use the Cardew C is not	compulsory with	EM9T			

Vigilohm : catalogue numbers Vigilohm System

monitors

type of network to be monitored:		alternating or mixed IT	accessible neutral	voltage < 760 V AC (45/	/400 Hz)
			non accessible neutral	voltage < 440 V AC (45/	/400 Hz)
		direct or rectified	line voltage	< 500 V DC	
XM300C	single phase a	auxiliary power supply (V)	115/127 V AC 50/60 Hz		50540
			220/240 V AC 50/60 Hz		50541
			380/415 V AC 50/60 Hz		50542
			500/525 V AC 50/60 Hz		50543
XM200	single phase a	auxiliary power supply (V)	115/127 V AC 50/60 Hz		50727
			220/240 V AC 50/60 Hz		50728
			380/415 V AC 50/60 Hz		50729
			500/525 V AC 50/60 Hz		50730
			300/323 V AC 30/00 Hz		30730

detectors

	type of networ	rk to be monitored: see CPI XM200		
	XD301	single phase auxiliary power supply (V)	115/127 V AC 50/60 Hz	50506
11111 111 111			220/240 V AC 50/60 Hz	50507
S MERLIN GERIN			380/415 V AC 50/60 Hz	50508
- 85			500/525 V AC 50/60 Hz	50509
	XD312	single phase auxiliary power supply (V)	115/127 V AC 50/60 Hz	50535
			220/240 V AC 50/60 Hz	50536
***********			380/415 V AC 50/60 Hz	50537
LANDON MODRIN (500/525 V AC 50/60 Hz	50538

toroids

	closed toroid	TA30	50437
		PA50	50438
I I I		IA80	50439
		MA120	50440
opening toroi		SA200	50441
		GA300	50442
	opening toroid	POA	50485
		GOA	50486

accessories

shielded pair coil	20 m	50137
	100 m	50136

interfaces

mobile detector and probes

	XRM mobile detector and XP15 probe	50277
	XRM mobile detector and XP50 probe	50287
<u>B</u>	XRM mobile detector and XP100 probe	50288
	XRM mobile detector and XP50 + XP100 probes	50289
	empty case for mobile fault tracking kit	50285
2 Z	probe XP15	50494

19

Cardew surge limitor

Cardew base		50169
Cardew cartridge	250 V	50170
-	440 V	50171
	660 V	50172
	1000 V	50183

adaptation plate

6570	used with CPI XM300c or XML308/37	16			
	type of network to be monitored:	alternating or mixed IT	accessible neutral	760 V AC < U < 1700 V	AC (45/400 Hz)
			non accessible neutral	440 V AC < U < 1000 V	AC (45/400 Hz)
13-11-2		direct or rectified	line voltage	500 V DC < U < 1200 V	DC
1 million and the	PHT1000				50248
THE REPORT OF					

auxiliaries

"250 V" Cardew C or	50170
"440 V" Cardew C or	50171
"660 V" Cardew C or	50172
"1 000 V" Cardew C	50183
Cardew C base	50169
limiting impedance ZX	50159

Schneider Electric SA

5, rue Nadar 92506 Rueil-Malmaison Cedex France

Tel: +33 (0)1 41 29 82 00 Fax:+33 (0)1 47 51 80 20 As standards, specifications and designs change from time to time, please ask for confirmation of the information given in this publication.

3 (0)1 41 29 82 00

This document has been printed on ecological paper.

http://www.schneiderelectric.com

Created by: Schneider Photos: Schneider Printing by: